Varsaw University of Technology

I:aculty of IPower and

 Aeronautical lingineeringWARSAW UNIVERSITY OF TECHNOLOGY
Institute of Aeronautics and Applied Mechanics

> Finite element method (FEM)
> Part 3. Two dimensional (20) cases. csT
03.2021

Plane stress (thin plates, shells)

$$
\begin{aligned}
& \sigma_{x} ; \sigma_{y} ; \sigma_{z}=0 \\
& \tau_{x y} ; \tau_{y z}=0 ; \tau_{z x}=0 \\
& \varepsilon_{x} ; \varepsilon_{y} ; \varepsilon_{z}=-\frac{v}{E}\left(\sigma_{x}+\sigma_{y}\right) \\
& \gamma_{x y} ; \gamma_{y z}=0 ; \gamma_{z x}=0
\end{aligned}
$$

$$
\begin{aligned}
& \lfloor u\rfloor=\lfloor u, v\rfloor \\
& \underset{1 \times 2}{\lfloor\sigma\rfloor}=\left\lfloor\sigma_{x}, \sigma_{y}, \tau_{x y}\right\rfloor \\
& \underset{1 \times 3}{\lfloor\varepsilon\rfloor}=\left\lfloor\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}\right\rfloor
\end{aligned}
$$

$$
[R]=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial} & \frac{\partial}{\partial}
\end{array}\right] \quad \underset{\substack{ \\
3 \times 1}}{\{\sigma\}}=\underset{3 \times 3}{[D]} \underset{3 \times 1}{ }\{\varepsilon\}
$$

$$
\underset{\substack{3 \times 3 \\
\text { P.STRESS }}}{D]}=\frac{E}{\left(1-v^{2}\right)}\left[\begin{array}{llc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1}{2}(1-v)
\end{array}\right]
$$

$$
\{\varepsilon\}=[R]\{u\}
$$

Plane strain (infinitely long pipe, prism and roller)

$$
\begin{aligned}
& \sigma_{x} ; \sigma_{y} ; \sigma_{z}=v\left(\sigma_{x}+\sigma_{y}\right) \\
& \tau_{x y} ; \tau_{y z}=0 ; \tau_{z x}=0 \\
& \varepsilon_{x} ; \varepsilon_{y} ; \varepsilon_{z}=0 \\
& \gamma_{x y} ; \gamma_{y z}=0 ; \gamma_{z x}=0
\end{aligned}
$$

$$
\stackrel{y}{x}
$$

$$
\begin{aligned}
& \left\lfloor{ }_{1 \times 2}^{\lfloor u\rfloor}=\lfloor u, v\rfloor\right. \\
& \underset{1 \times 3}{[\sigma\rfloor}=\left\lfloor\sigma_{x}, \sigma_{y}, \tau_{x y}\right\rfloor \\
& \left\lfloor{ }_{1 \times 3}\right\rfloor=\left\lfloor\varepsilon_{x}, \varepsilon_{y}, \gamma_{x y}\right\rfloor
\end{aligned} \quad \underset{3 \times 2}{[R]}=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]
$$

$$
\underset{3 \times 1}{\{\sigma\}_{1}}=\underset{3 \times 3}{[D]} \underset{3 \times 1}{\{\varepsilon\}}
$$

$$
\underset{\substack{3 \times 3 \\
\text { P.STRAIN }}}{[D]}=\frac{E}{(1+v)(1-2 v)}\left[\begin{array}{ccc}
1-v & v & 0 \\
v & 1-v & 0 \\
0 & 0 & \frac{1}{2}(1-2 v)
\end{array}\right]
$$

$$
\{\varepsilon\}=[R]\{u\}
$$

$$
3 \times 1 \quad 3 \times 2 \quad 2 \times 1
$$

Axisymmetry (rotating disc)

$$
\begin{aligned}
& \sigma_{x} ; \sigma_{y} ; \sigma_{z} \\
& \tau_{x y} ; \tau_{y z}=0 ; \tau_{z x}=0 \\
& \varepsilon_{x} ; \varepsilon_{y} ; \varepsilon_{z}=0 \\
& \gamma_{x y} ; \gamma_{y z}=0 ; \gamma_{z x}=0 \\
& \lfloor u\rfloor=\lfloor u, v\rfloor \\
& 1 \times 2 \\
& \underset{1 \times 4}{\mid \sigma]_{4}}=\left\lfloor\sigma_{x}, \sigma_{y}, \sigma_{z}, \tau_{x y}\right\rfloor \\
& \underset{1 \times 4}{\lfloor\varepsilon\rfloor}=\left\lfloor\varepsilon_{x}, \varepsilon_{y}, \varepsilon_{z}, \gamma_{x y}\right\rfloor
\end{aligned}
$$

directions:
x - radial
y - longitudinal
z - hoop

$$
[R]=\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
\frac{1}{x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]
$$

$\{\varepsilon\}=[R]\{u\}$

Constraints for a 2D plate loaded by forces being in equilibrium

CST finite element (2D, 3-node triangle)

area thickness

$$
n=3 \quad ; \quad n_{p}=2 \quad \rightarrow \quad n_{e}=n \cdot n_{p}=6
$$

Area coordinates as functions of coordinates (x, y) :

$$
A_{1}=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
\hdashline x & x_{2} & x_{3} \\
y & y_{2} & y_{3}
\end{array}\right| \quad ; \quad A_{2}(x, y)=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x & x_{3} \\
y_{1} & y_{1} & y_{3}
\end{array}\right| \quad ; \quad A_{3}(x, y)=\frac{1}{2}\left|\begin{array}{ccc}
1 & 1 & 1 \\
x_{1} & x_{2} & i \\
y_{1} & y_{2} & y
\end{array}\right|
$$

Shape functions of the CST element

shape functions = normalized area coordinates:

$$
\begin{aligned}
& N_{1}(x, y)=\frac{A_{1}(x, y)}{A_{e}}=\frac{1}{2 A_{e}}\left(a_{1}+b_{1} x+c_{1} y\right) \\
& N_{2}(x, y)=\frac{A_{2}(x, y)}{A_{e}}=\frac{1}{2 A_{e}}\left(a_{2}+b_{2} x+c_{2} y\right) \\
& N_{3}(x, y)=\frac{A_{3}(x, y)}{A_{e}}=\frac{1}{2 A_{e}}\left(a_{3}+b_{3} x+c_{3} y\right)
\end{aligned}
$$

$N_{1}(x, y)+N_{2}(x, y)+N_{3}(x, y)=1$

$$
N_{2}(x, y)
$$

$$
N_{3}(x, y)
$$

node	$N_{1}(x, y)$	$N_{2}(x, y)$	$N_{3}(x, y)$
1	1	0	0
2	0	1	0
3	0	0	1

where:

$$
\begin{array}{lll}
a_{1}=x_{2} y_{3}-x_{3} y_{2} & ; & a_{2}=x_{3} y_{1}-x_{1} y_{3} \\
b_{1}=y_{2}-y_{3} & ; & a_{3}=x_{1} y_{2}-x_{2} y_{1} \\
c_{1}=x_{3}-x_{2} & ; & b_{2}=y_{3}-y_{1} \\
c_{2}=x_{1}-x_{3} & ; & b_{3}=y_{1}-y_{2} \\
c_{3}=x_{2}-x_{1}
\end{array}
$$

Isoparametric mapping in the CST element

vector of shape functions:

$$
\lfloor N(x, y)\rfloor=\left\lfloor N_{1}(x, y), N_{2}(x, y), N_{3}(x, y)\right\rfloor
$$

vectors of nodal coordinates;

$$
\underset{3 \times 1}{\left\{x_{i}\right\}_{e}}=\left\{\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right\} \quad ; \quad \underset{3 \times 1}{\left.\left\{y_{i}\right\}_{e}=\left\{\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right\}\right\}, ~ \text {. }}
$$

coordinates of any point are based on shape functions and nodal parameters:

$$
\begin{aligned}
& x=\underset{1 \times 3}{[N(x, y)}] \underset{3 \times 1}{\left\{x_{i}\right\}_{e}}=N_{1}(x, y) x_{1}+N_{2}(x, y) x_{2}+N_{3}(x, y) x_{3} \\
& y=\underset{1 \times 3}{[N(x, y)]\left\{y_{i}\right\}_{e}}=N_{1 \times 1}(x, y) y_{1}+N_{2}(x, y) y_{2}+N_{3}(x, y) y_{3}
\end{aligned}
$$

displacements at any point:

$$
\underset{2 \times 1}{u(x, y)}\}=\underset{2 \times 6}{[N(x, y)]} \underset{6 \times 1}{\{q\}_{e}}
$$

Strain-displacement matrix of the CST element

strain vector for plane stress or plane strain conditions:

$$
\begin{aligned}
& \underset{3 \times 1}{\{\varepsilon\}}=\underset{3 \times 2}{[R]} \underset{2 \times 1}{\{u\}}=\underset{3 \times 2}{[R]} \underset{2 \times 6}{[N]} \underset{6 \times 1}{ }\{q\}_{e}= \\
& =\left[\begin{array}{cc}
\frac{\partial}{\partial x} & 0 \\
0 & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{array}\right]\left[\begin{array}{cccccc}
N_{1}(x, y) & 0 & N_{2}(x, y) & 0 & N_{3}(x, y) & 0 \\
0 & N_{1}(x, y) & 0 & N_{2}(x, y) & 0 & N_{3}(x, y)
\end{array}\right]\{q\}_{e 1}= \\
& =\left[\begin{array}{cccccc}
\frac{\partial N_{1}}{\partial x} & 0 & \frac{\partial N_{2}}{\partial x} & 0 & \frac{\partial N_{3}}{\partial x} & 0 \\
0 & \frac{\partial N_{1}}{\partial y} & 0 & \frac{\partial N_{2}}{\partial y} & 0 & \frac{\partial N_{3}}{\partial y} \\
\frac{\partial N_{1}}{\partial y} & \frac{\partial N_{1}}{\partial x} & \frac{\partial N_{2}}{\partial y} & \frac{\partial N_{2}}{\partial x} & \frac{\partial N_{3}}{\partial y} & \frac{\partial N_{3}}{\partial x}
\end{array}\right] \underset{6 \times 1}{\{q\}_{e}=\underset{3 \times 6}{[B]}\{q\}_{e}} \\
& {[B]=\frac{1}{2 A_{e}}\left[\begin{array}{cccccc}
b_{1} & 0 & b_{2} & 0 & b_{3} & 0 \\
0 & c_{1} & 0 & c_{2} & 0 & c_{3} \\
c_{1} & b_{1} & c_{2} & b_{2} & c_{3} & b_{3}
\end{array}\right] \rightarrow \underset{3 \times 1}{\{\varepsilon\}}=\underset{3 \times 6}{[B]}\{q\}_{6 \times 1}-\text { strain is constant }} \\
& \underset{3 \times 1}{\{\sigma\}_{1}}=\underset{3 \times 3}{[D]} \underset{3 \times 1}{\{\varepsilon\}_{1}} \text { - stress is constant } \\
& \text { CST - Constant Strain Triangle }
\end{aligned}
$$

Elastic strain energy in the CST element. Local stiffness matrix

elastic strain energy in a finite element:

$$
=\frac{1}{2}[q]_{e}[k]_{e}\{q\}_{e}
$$

local stiffness matrix:

$$
\left[\begin{array}{c}
{[k]_{e}}
\end{array}=A_{e} t_{e}{ }_{e}[B]^{T}[D][B \times 3 \times 3 \times 6\right.
$$

Potential energy of loading in the CST element

potential energy of loading in a finite element:

$$
\lfloor p\rfloor=\left\lfloor p_{x}, p_{y}\right\rfloor
$$

$$
\left[F_{1 \times 6}^{X}\right]_{e}=t_{e} \int_{A_{e}}[X]\left[\begin{array}{l}
X \times 2 \times 6 \\
{\left[F^{p}\right]_{e}=t_{e}}
\end{array} \int_{0}^{l} \underset{1 \times 6}{l}[p] d A_{e}\right][N] d s
$$

$$
\begin{aligned}
& W_{e}=\int_{\Omega_{e} \times 2 \times 2 \times 1}\left\lfloor X \mid\{u\} d \Omega_{e}+\int_{\Gamma_{p e} 1 \times 22 \times 1}\lfloor p\rfloor\{u\} d \Gamma_{p e}=\right. \\
& \{u\}=[N]\{q\}_{e} \\
& 2 \times 1 \quad 2 \times 6 \quad 6 \times 1
\end{aligned}
$$

Components of equivalent load vector in the CST element

equivalent load vector due to mass forces:

$$
\begin{aligned}
\left\lfloor F_{1 \times 6}^{X}\right\rfloor_{e} & =t_{e} \int_{A_{e}}\lfloor X, Y\rfloor\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right] d A_{e}= \\
& =t_{e} \int_{A_{e}}\left\lfloor X N_{1}, Y N_{1}, X N_{2}, Y N_{2}, X N_{3}, Y N_{3}\right\rfloor d A_{e}=\left\lfloor F_{1 e}^{X}, F_{2 e}^{X}, F_{3 e}^{X}, F_{4 e}^{X}, F_{5 e}^{X}, F_{6 e}^{X}\right\rfloor
\end{aligned}
$$

equivalent load vector due to surface load:

$$
\begin{aligned}
& \left\lfloor F_{1 \times 6}^{p}\right\rfloor_{e}=t_{e} \int_{0}^{l}\left\lfloor p_{x}, p_{y}\right\rfloor\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right] d s= \\
& \quad=t_{e} \int_{0}^{l}\left\lfloor p_{x}, p_{y}\right\rfloor\left[\begin{array}{cccccc}
1-\frac{s}{l} & 0 & \frac{s}{l} & 0 & 0 & 0 \\
0 & 1-\frac{s}{l} & 0 & \frac{s}{l} & 0 & 0
\end{array}\right] d s= \\
& =t_{e} \int_{0}^{l}\left\lfloor p_{x}\left(1-\frac{s}{l}\right), p_{y}\left(1-\frac{s}{l}\right), p_{x} \frac{s}{l}, p_{y} \frac{s}{l}, 0,0\right\rfloor d s= \\
& =\left\lfloor F_{1 e}^{p}, F_{2 e}^{p}, F_{3 e}^{p}, F_{4 e}^{p}, F_{5 e}^{p}, F_{6 e}^{p}\right\rfloor
\end{aligned}
$$

$$
\left.N_{1}(s)\right|_{1-2}=1-\frac{s}{l}
$$

$$
\left.N_{2}(s)\right|_{1-2}=\frac{s}{l}
$$

Equivalent load vector in the CST element

equivalent load vector:

$$
\lfloor F\rfloor_{e}=\left\lfloor F_{1 e}^{X}+F_{1 e}^{p}, F_{2 e}^{X}+F_{2 e}^{p}, F_{3 e}^{X}+F_{3 e}^{p}, F_{4 e}^{X}+F_{4 e}^{p}, F_{5 e}^{X}+F_{5 e}^{p}, F_{6 e}^{X}+F_{6 e}^{p}\right\rfloor
$$

Results in the CST element

DOF solution : $u(\mathrm{x}, \mathrm{y}), v(\mathrm{x}, \mathrm{y})$

element solution: $\underset{3 \times 1}{\{\sigma\}}, \underset{3 \times 1}{ }\{\varepsilon\}$

